
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VO1. 36, NO. 3, MARCH 1988 529

Scattering Parameter Transient Analysis
of Transmission Lines Loaded with

Nonlinear Terminations
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Abstract —This work presents a new approach for the time-domain

simulation of transients on a dkpersive and Iossy transmission line

terminated with active devices. The method combines the scattering matrix

of an arbitrary line and the nonlinear causal impedance fnnctions at the

loads to derive expressions for the signals at the near and far ends.

The problems of line losses, dispersion, and nonlinearities are first

investigated. A time-domain formulation is then proposed using the scatter-

ing matrix representation. The afgorithm assumes that dispersion and loss

models for the transmission lines are available and that the frequency

dependence is known. Large-signal equivalent circuits for the terminations

are assumed to be given. Experimental and computer-simulated results are

compared for the lossless dispersiordess case, and the effects of losses and

dispersion are predicted.

I. INTRODUCTION

INTODAY’S MANY applications of integrated circuits

and printed circuit boards, transmission lines and inter-

connections play an instrumental role at virtually every

level of integration. With the design of fast devices having

switching times in the picosecond range, transmitting data

at high megabaud rates has become very commonplace in

modern digital computers and switching networks used for

telecommunication. Signal delays and rise times are more

and more limited by interconnection lengths rather than

by device speed and represent a potential obstacle to the

ultimate scaling on VLSI technology. In recent years,

modeling interconnections has become a major focus of

interest in the implementation of digital and microwave

circuits. Shorter rise and fall times as well as higher

frequency signals have compelled most transmission lines

to operate within ranges where dispersion is no longer

negligible. Skin effect and losses contribute to signal cor-

ruption leading to waveform attenuation as well as pulse

rise and fall time degradations. In wafer-scale integration,

these losses can become very significant and may lead to

an RC type behavior of the lines. Finally, in the case of

multiconductor lines, cross-coupling between neighboring

lines may increase the level of distortion in excited lines

which can initiate false signals in nonexcited lines.

The implementation of a high-density-compatible pack-

aging scheme is essential for the design of high-speed
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digital systems such as gallium arsenide integrated circuits.

For microwave or digital applications, printed circuit

boards, chip carriers, and modding of these networks

represent the first step toward implementing reliable de-

sign guidelines. A complete CAD tool for studying these

effects would require a frequency-domain characterization

of the transmission line with higher-order modes included

to account for dispersion. Numerous authors have investi-

gated the properties of microstrip lines at high frequencies

and derived expressions relating the propagation character-

istics to frequency [1]–[10]. Full-wave and simplified mod-

els have been proposed to describe these effects and to

derive the frequency dependence of the characteristic im-

pedance and the propagation constant. Other geometries,

such as stripline, buried microstrip, and coplanar, have

thus far received less attention but obey the same restric-

tions imposed on the electrical performance of microstrip

at microwave frequencies.

Of equal importance is the analysis of a high-speed or

high-frequency signal propagating on a dispersive and

lossy transmission line. Such an analysis requires a com-

plete and accurate frequency characterization of the struc-

ture of interest and, for practicality, must implement the

nonlinear and time-changing behaviors of the termina-

tions, which are transistors, logic gates, or other types of

active devices. Several investigators have attempted to set

up analytical models describing wave propagation in such

systems. Solutions for lossless lines with arbitrary termina-

tions were obtained by Mohammadian et al. [12] using a

forward and backward wave approach. Veghte and Balanis

[13] have analyzed the distortion of a pulse due to dis-

persion along a microstrip transmission line. Caniggia

[14] combined macromodels for transmission lines and

terminations, and Djordjevic et al. [11] used a Green’s

function approach to simulate the time-domain transient

on a multiconductor array with nonlinear terminations.

In this study, a combined frequency-domain, time-

domain approach is used to formulate the propagation

equations on a dispersive and lossy line with nonlinear be-

havior at the terminations. The novelty of the method
resides in the formulation, which separates the linear ex-

pressions for the transmission line from the nonlinear

expressions for the terminations by means of scattering

parameters and the use of an auxiliary reference imped-
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ante. A time-domain flow-graph representation of the

solution is also derived. In the lossless case, the solution

reduces to very simple expressions which greatly increase

computational efficiency.

II. FORMULATION

Consider an arbitrary transmission line with arbitrary

loads at both ends (see Fig. 1). The differential equations

relating the voltage V and the current 1 along the line are

expressed by

av ar
—~= LO~+ROI

81
–Z=CO:+GOV

(la)

(lb)

where LO, CO, R ~, and GO are the inductance, capacitance,

resistance, and conductance per unit length, respectively.

The solutions for time-harmonic excitation are usually

written in the frequency domain as (o = 2 mf is angular

frequency)

V(u,.x) =Ae-yx+ Be+y’ (2a)

I(ti, x) = #[ Ae-yx– Be+yx] (2b)
o

where

Y=@. + juLo)(Go+ juCo) ‘“RET
(3)

Here y and Z. are complex, leading to an attenuation of

the signal as it propagates through the medium. If the

terminations are linear and time-invariant (i.e., Zl( t) and

Z2(~ ) are constant with time), the coefficients A and B

can be determined by matching boundary conditions at

x = O and x = 1; next, an inverse Fourier transform ap-

proach can be used to solve for the time-domain solution.

On the other hand, if the terminations are nonlinear or

time-changing, then the boundary conditions must be for-

mulated in the time domain as

~(t) =v(t, o)+zl(t)~(t, o) (4)

z2(t)I(t,l)=v(t,l) (5)

where V,(t) is the source voltage. Zl( t)and Z1 (t) indicate

the time variations of the source and load terminations,
respectively. For any time greater than t, Zl(t) and Z2(t )

are not known, since they depend on the voltage and

current solutions at time t.In fact, the evaluation of Zl( t)

and 22( t)may involve several iterations that involve solv-

ing the terminal network equations with trial values until

convergence to the true impedance values. Transforming

conditions (4) and (5) into the frequency domain is inap-

propriate, and a time-domain formulation is thus neces-

sary. Likewise, (2) and (3) cannot conveniently be analyti-

cally inverted into the time domain and constrained to

satisfy (4) and (5). This limitation arises not only because

of the dispersive and frequency-dependent characteristics

~L~
A, b,irory

Tronsw,, sston L,ne
Arb, trory

Lood Lood

. z 1 (t) I z~(o) J3(0) Z2 (t) ,
V$(t) X.o F-

Fig, 1. Transmission line with nonlinear terminations and source

generator.

of the line, but also because the evaluation of the coeffi-

cients A and B requires an a priori knowledge of the

time-dependent load functions. A formulation in which the

causality of the boundary conditions is implied thus be-

comes necessary. The use of scattering parameters allows

one to define the properties of the transmission line inde-

pendently from those of the terminations; consequently,

by properly combining load and line relations, a simple

expression for the solutions can be derived.

III. SCATTERING PARAMETER FORMULATION

Any linear two-port network can be described as a set of

scattering parameters (S parameters) which relate incident

and reflected voltage waves. These waves are variables

which depend on the total voltages and currents at

the two-port. If ideal (lossless and dispersionless) transmis-

sion lines of known characteristic (reference) impedance

Z,cf are connected to both ports of a linear network, then

the voltage waves on the reference lines (see Fig. 2)

al, bl, a ~, bz are defined as the incident and reflected

waves from port 1 and port 2, respectively. The scattering

parameters are then known to satisfy the frequency-domain

relation

bl = ~llal + $Izaq (6)

bz = f21a1 + &a2. (7)

~11 and ~zz are regarded as scattering reflection coeffi-

cients, whereas S“lz and S;l are the scattering transmission

coefficients of the network. The total voltages in ports 1

and 2 are, respectively, given by

Vl=al+bl (8)

V1=a2+b2 (9)

and the expressions for the currents are

bl
ll=~– ——

z Zref
(lo)

ref

bz
12=%– —

z Z,ef “
(11)

ref

A relation between the propagation characteristics of a

transmission line and the associated scattering parameters

can then be easily derived. For a single mode of propa-

gation, it can be shown that for a given transmission line

(1-a’)p
ill = 922= S,’=i’l= “-’”)a (,2)

1 – p%’ 1 – p’a~

~=e-Yl
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Fig. 2. Transmission line and frequency-domainflow-graph representa-
tion using scatteringparameters.

t t
I I

I
T,(t)‘77-f0rli%i742)w

L,;l,- i +
’02’I 9,(t)

Fig. 3. Time-domain circuit and flow-graph representation of arbitrary
transmission line (TL) with nonlinear terminations at time t.The sign *
indicates a convolution between time-domain scattering parameters
and the independent voltage waves al and a2 as per (14) and (15).

where a(~) and ZO( o ) account for the dispersive and

lossy behaviors of the line. ZO( u ) is the characteristic

impedance of the line to be analyzed and must be dis-

tinguished from Z,ef, the characteristic impedance of the

reference lines which support the voltage waves associated

with the S parameters. The scattering parameters of a

transmission line depend only on its electrical characteris-

tics and are not influenced by the source and load voltages

at the terminations; however, the overall response of the

system is a combination of line and termination responses

and can be obtained by cascading the various sections of

the network. We can then write the time-domain equations

relating the voltage waves of an arbitrary line terminated

with nonlinear loads (Fig. 3). We get (subscripts 1 and 2

refer to near end and far end, respectively)

bl(t)=S1l(t)*al (t)+ S12(t)*a2(t) (14)

b,(t) =S,l(t)*al(t) +S,2(t)*a,(t) (15)

where * indicates a convolution in the time domain. The

scattering parameters Sll( t ), S12(t ), S21(t),S22(t) are the

inverse transforms of the frequency-domain S parameters

and can be viewed as Green’s functions associated with the

time-domain response of the transmission line, due to a

single frequency source at the terminations. The load

conditions at the near and far ends are now directly

expressed in the time domain by looking at the flow-graph

representation of the system (see Fig. 3)

~l(t)=rl(t)bl(t )+~l(t)gl(t) (16)

a2(t)=r2(t)b2(t) +T2(t)g2(t) (17)

in which rl( t), 1’2( t), Tl(t), T2( t) are the reflection and

transmission coefficients associated with near and far ends,

respectively:

In (14) and (15), each of the convolution terms can be

expressed as

JS1~a,= ‘Sl, (t– T)aJ(T) d~. (19)
o

Since the algorithm to be derivecl must be amenable to

computer usage, it is desirable to d iscretize (19) and isolate

aj(t ) in a manner analogous to [11, eqs. (12) and (13)]:

or

where Ar is the time step and S;(0)= ~ij(0)A~. Hi, (I) =

~~:}$j (t – ~) aj (T)AT represents the history of the line
and depends or~ information up to time t– 1. Causality

insures that the aj’s are known for ~ < t,which allows the

use of this information for the determination of the aj’s at

~ = t.We first substitute (21) into (14) and (15) and obtain

bl(t)=S~l(0)al( t)+ S{2(0)a2(t) +H11(t)+H12(t)

(22)

b2(t)=S:1(0)a1( t)+ S{2(0)a2(t) +H,1(t)+Hz2(t).

(23)

Combining the above equations with those for the forward

waves (16) and (17), one gets

~l(t) = [1-r2(t)s;2(o)] [~l(t)gl(t)+ r,(t) kf,(t)]

A(t)

+ r,(t) s[2(o)[~2(t)g2( i)+r2(t)fvf2(t)]

A(t)
(24)

a,(t) = [1-r, (t)s[,(o)] [~2(t)lr2(t)+r2 (t)kf2(t)]

A(t)

r2(t)s;,(o)[~,( t)gl(t) +r,(t)kf,(~)]
+

A(t)
(25)

A(t) = [l–rl(t)s[,(o)] [l–r2s;,(o)]

– r1(t)s~2(o)r2(t) s,j(o) (26)

where Ml(t) = Hll(t)+ H12(t),and M2(t) = H21(t)+

H22(I).The variables bl( t) and b:,(r) are recovered using

(22) and (23), and the total voltag,es at ports 1 and 2, by

using (8) and (9). Fig. 4 shows the flow-graph representa-

tion for the transmission line at time t in which the

memory of the complete network has been included in the

terms ikfl(t) and M2(t).The independent terms are gl(t )
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g,(t) T, (t) o,(t) S2;(0) b2(t)

~i’)
r, (t) H s,;(0) S2; (0)H rz(tj

~.
Ml(t) I b ,(t) s,;(o) oJt) T2 (t) (/z(t)

Fig. 4. Equivalent flow-graph representation of arbitra~ transmission
line with nonhnear time-varying terminations at time 1.The hktory of
the network is included via the memory variables kfl ( t) and M2 (t ).
Note that this representation involves only multiplications in the time
domain.

and gz(t). Ml(t) and MJt) are also independent and

contain the information pertinent to the history of the line.

Numerical efficiency is of practical importance for the

simulation since it determines the speed of the computa-

tions involved. Expressions (24)–(26) can be further re-

duced by observing that for transmission lines with non-

zero length, S{2(0) and S~l(0) must vanish, since al finite

duration is required for an arbitrary signal to propagate

through the line. The above relations then become

~l(t) = [l-r, (t)s;,(o)] [~,(t) gl(t)+r,(t)kfl(t)]

A(t)

(27a)

~,(t) = [l-rl(t)s{l(o)] [~,(t) g,(t) +r,(t)kf,(t)]

A(t)

(27b)

bl(t)=S[l(0) al(t) +Ml(t) (27c)

bq(t) =S~2(0)a2(t)+M2(t) (27d)

with

A(t) = [l– I’l(t)S{l(0)] [l- I’,(t) S~,(O)]. (28)

Computational limitations in these expressions are es-

sentially determined’ by AIl( t) and M2( t),which con-

tain the history of the network and involve the voltage

wave solutions from previous time steps. In the case where

losses and dispersion are neglected, the frequency-domain

scattering parameters associated with the transmission line

become

ill(o) =g2(ti) =
(1- e-’Jw’/’))P

1 _ ~2e - 2JJ//.
(29)

(~ - P2) e-Jd/u
&2((J) =S21(CJ) = ~_p2e_2,@1/” (30)

where

Since ZO, the

Z. – Zref
‘=zo+zref” (31)

characteristic impedance of the line, is con-

stant with time, and since Z,.f, the reference impedance, is

arbitrary, one can choose Z,,f = ZO, which leads to p = O
and

&(u)=~22(6J)=o (32)

ilz(ti) =S21(0) =e-J*’/”. (33)

Therefore, the time-domain Green’s functions associated

with the scattering parameters are

s,,(t) =s22(t) =0 (34)

(1
s12(t)=s21(t) =8 t–: (35)

M1(t)=a2(t– J/u) (36)

M2(t)=a1(t– 1/u) (37)

A(t) =1. (38)

We then obtain simple expressions for the forward and

backward waves:

a1(t)=7’1(t)g1( t)+r1(t)a2(t -l/u) (39)

a2(t)=T2(t)g2(t) +I_’2(t)a1(t-l\u) (40)

b1(t)=a2(i– 1/u) (41)

b2(t)=a1(t– 1/u). (42)

The advantage of the above expressions lies in their

computational efficiency, since only a search is involved in

the evaluation of the history of the network, and no

summations of previously calculated terms are needed.

IV. MODELS FOR TERMINATIONS AND DEVICES

Thus far, this study concentrated on simulating the

time-domain transient response for arbitrary transmission

lines terminated with nonlinear devices. In this section, we

examine the nature of the terminations and the manner in

which they are to be represented in a form consistent with

the relations derived. Several techniques are available that

convert reactive elements and nonlinear devices to time-

varying causal resistances as well as voltage or current

sources. We briefly overview two of these techniques,

namely, the trapezoidal algorithm and the Newton–

Raphson (NR) algorithm. A more detailed development

can be found in [15]. Since formulation and solution are in

the time domain, every element must have an equivalent

network in the time domain. The trapezoidal algorithm is a

numerical integration algorithm, and its use in repre-

senting reactive elements in the time domain is illustrated

below: Consider a

relation given by

If we discretize the

capacitor C, with a current–voltage

I= C:. (43)

time variable by choosing a time step

h, then the voltage V~+l at time ~~+1 = (n ~ l)h can b~

approximated in terms of variables at t= A as

v.+l=K+:K’+l+;% (44)

where the superscript ‘ indicates a derivative with respect

to time. Making use of (43), we get

c
I fl+l= :vn+l–

()
jyn+in . (45)

Equation (45) can then be represented by the equivalent
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i(t) in+l

++ ‘~ T 7
~lv(,)
T’

Vn+l ~=~ mt 2C~+i.

Fig. 5.

I

l(VK)

JK

Fig. 6.

Linear capacitor and equivalent time-domain trapezoidal al-
gorithm representation.

/’ Slope = GK

Geometrical and circuit interpretation of the Newton–Raphson
afgorithm at the k th iteration.

linear one-port model at time tn+~= (n+ l)h (see Fig. 5)
2C 2C

with conductance G = ~ and current source Jn = ~ Vn

+ in. An analogous derivation can be performed for induc-

tances as well. The efficiency of the method depends on a

proper choice of the time step which determines the stabil-
ity of the numerical solution. Several other techniques of

numerical integration are also available which offer greater

stability at the price of numerical complexity [15].
Nonlinear elements such as diodes and transistors must

be reduced to equivalent networks with linear elements at

time t.If the nonlinear current voltage relation for these

elements is known, then an iterative scheme such as the

Newton–Raphson algorithm can be’ used to seek a solu-

tion. The circuit representation of the Newton–Raphson

technique is illustrated in Fig. 6. At a particular time, a

guess value for the voltage is chosen to which a current is

associated via the 1 – V relations that determine the operat-

ing point Q. The next guess is then related to the previous

one by

rd~l-1

11
..-

~+l=Vk– — Ik.v
dV

(46)

At each iteration step, the resulting equivalent circuit

is composed of a linear conductance of value G~ = dI/dV
at Vk and a current source with value given by Jk =
I(Vk) – GkVk. Solving the combined transmission line

Newton–Raphson equivalent circuit problem at each itera-

tion step will lead to the actual representation of the

termination at time t.

Once linearization and discretization are performed,

time-domain values are available for the equivalent resis-

tances or generators. These expressions are causal, since

their values at any time t depend on the history of the

network which renders impossible an u priori knowledge

of the time variations of the termination impedance. Non-

linear complex elements can be handled by first using the
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NR scheme for linearization at a ~~iven time, then stepping

in the time domain while replacing linear complex ele-

ments by time-varying resistances and generators.

V. APPLICATIONS AND PRACTI CAL CONSIDERATIONS

Many applications in microwave and digital communi-

cations require the use of transmission lines terminated

with nonlinear devices. Distortion and noise arise when the

terminations are not matched to th’e line impedance. More-

over, if losses and dispersion are present in the line,

attenuation and time delay come into account. The combi-

nation of these effects needs to bc modeled and simulated

on a reliable computer-aided design (CAD) tool. Simula-

tions of pulse propagation through lossy transmission lines

terminated with active devices can be very useful in pre-

dicting signal distortion, attenuation, rise and fall time

degradation which occur along the transmission path. The

necessary information for such a tool are the line parame-

ters over a wide frequency ran~e and complete device

characteristics. The line parameters can be found from a

frequency-domain full-wave dispersion analysis which in-

cludes the effects of losses. Device data are usually ob-

tained from the current–voltage characteristics provided

by the manufacturers.

Several computer simulation programs were developed

to simulate waveform distortion on various combinations

of transmission lines and terminations. First, a lossless

stripline structure terminated with advanced Schottky (AS)

TTL inverters was studied (see Fig. 7). The length of the

line was 50 in (1.27 m) with 20 ❑= 73 L?, u = 0.142 m/ns.

The line was excited by the output of an AS04 inverter

(driver). The receiving end of the line was connected to the

inputs of eight AS240 inverters. For computational ef-

ficiency, a simple dynamic nonlinear equivalent circuit was

used to model the output of the driver. The network

consisted of a voltage generator in series with a voltage-

dependent resistor. An 8 pF capacitor was placed in paral-

lel with’ the combination to model rise and fall time

degradation and RC time delays (see Fig. 7(b)). The gener-

ator provided a pulse with a magnitude of 4.2 V. The

voltage dependence of the resistance is shown in Fig. 7(b).

The quick jump in resistance is used to model the cutoff

point of one output transistor of the TTL inverter. The

input of each AS240 inverter was modeled as a reverse-bi-

ased Schottky diode in parallel with an 8 pF capacitor (see

Fig. 7(c)). The simulation process involved first choosing a

time interval and then stepping in time and determining

the voltage variables as per (39)–(42). The trapezoidal

scheme was used to convert capacitors to linear sources

and resistances. Likewise, the Newton-Raphson algorithm

made it possible to convert the. Schottky diodes into a

linearized equivalent circuit. The time steps were found to

have no significant effects on the accuracy of the solutions

due to the good stability properties of the trapezoidal

algorithm. Experimental results are compared with the

simulations in Fig. 8(a) and (b). Minor discrepancies were

attributed to pin and socket inductances, which were not

accounted for in the model. Likewise, charge control ef-
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AS240

inverters

AS04 E

?&%3?’Ed

inverter

Stripline

Pulse

9

EK!
Far

Gm. Erd
Length=l .27 meters

Characteristic impedance = 73 Q
E

Propagation velocity = 0,142 meters/ni
%-

8 loads

(a)

2s (Vo) 450

n“ ~~ ~ilc
8

Vo (volts)

(b)

o
I 1

i- 1
v -A 8 pF

(c)

Fig. 7. (a) Configuration used for simulation of transients on a stripline
structure with nonlinear loads. (b) Model used for AS04 driver with
voltage dependence of impedance, C, = 8 pF. ~,(r) has the following
characteristics: width = 108 ns, rise time = 5 ns, fall time = 4 ns.
(c) Model used for the input of each AS240 receiver. The diode has a
saturation current I, =10-12 A.

fects, which determine rise and fall time degradation as

well as time delay through the inverters, were not modeled.

The otherwise overall good agreement indicated the valid-

ity of the simplified device models.

Losses were also analyzed using (27). First, the

frequency-domain scattering parameters were calculated

for the transmission line shown in Fig: 9. Skin effect in the

conductor was accounted by a O behavior of the resis-

tance per unit length. Once the frequency dependence of

the scattering parameter was determined, a fast Fourier

transform (FFT) algorithm was used to soive for the

time-domain Gree~s functions associated with the S
parameters. Then (20)–(28) were used to calculate. the

voltage waves. Fig. 9 shows the configuration used to

predict and compare waveforms on lossless and lossy

microstrip lines. The low-frequency characteristics of the

line were: LO= 539 nH\m and CO= 39 pF\m. The resis-

tance per unit length for the lossy case was R ~

= ~ 1 kQ/m Dielectric losses were neglected

(b)

Fig. 8. Comparison of theoretical (plots) and experimental (photo-
graphs) simulations for the stripline structure terminated with AS
inverters of Fig. 7 at (a) the near end and (b) the far end. Vertical
scales in experimental simulations have a probe attenuation factor of
10.
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~ Propagation veloclty = 0.217 meters/nS

Fig. 9. Microstnp configuration used to simulate the effects of losses.
Line length =25 inches (0.635 meters). Low-frequency electrical char-
acteristics: LO = 539 nH/m, CO= 39 pF/m. Loss characteristics: R ~ =

~-1 kQ/m and GO= O ruhos/meter. Pulse characteristics:
magnitude = 4 V, width = 20 ns, rise and faJl times = 1 ns.

Near End

3“-

2-
1

1

1-
[ I

1

0 4A

-1 ~
o 10 50

Time (ns)

(a)

Far End

5-

4-

3-

2-

1-

0 4

-1 -

-n- Iossy

— Iossless

-m Ix+sy

— Iossless

-2 ~
o 10 20 50

Time (m)

(t))

Fig. 10. Comparisons between responses for lossless and lossy cases for
the microstrip structure of Fig. 9 at (a) the near end and (b) the far end.

(G. = O), which is a good representation of many intercon-

nections in integrated circuit design. The above configura-

tion was excited by a 4 V pulse generator with an internal

impedance of 50 0, and a termination impedance of 1 kfl.

A comparison between lossy and lossless cases is shown in

Fig. 10. As anticipated, the introduction of losses led to

rise and fall time degradation and waveform attenuation.

Experimental simulations were not available due to the
lack of reliable measurement techniques for accurately

determining the frequency dependence of microstrip loss

parameters. Such information is essential in developing

models to be used in conjunction with the simulations.

Other alternatives would include providing a set of mea-

sured scattering parameters for an arbitrary (lossy and
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dispersive) transmission line over a wide frequency range

(up to 18 GHz). Time-domain Green’s functions cart then

be numerically computed and used to calculate the associ-

ated response.

VI. CONCLUSIONS

This study explored some imporl,ant aspects of intercon-

nections for digital and microwave applications. The prob-

lems of losses, dispersion, and load nonlinearities were

analyzed. A simple algorithm was derived for the simula-

tion of an arbitrary time-domain signal on a structure

having all the above properties. The algorithm assumed

that the frequency-dependent characteristics of the line

were available as well as large-signal models for the

terminations. Future work includes the derivation of a

suitable loss and dispersion model i~nd the extension of the

algorithm for modeling n-line multiconductor systems.
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