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Scattering Parameter Transient Analysis
of Transmission Lines L.oaded with
Nonlinear Terminations
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Abstract — This work presents a new approach for the time-domain
simulation of transients on a dispersive and lossy transmission line
terminated with active devices. The method combines the scattering matrix
of an arbitrary line and the nonlinear causal impedance functions at the
loads to derive expressions for the signals at the near and far ends.

The problems of line losses, dispersion, and nonlinearities are first
investigated. A time-domain formulation is then proposed using the scatter-
ing matrix representation. The algorithm assumes that dispersion and loss
models for the transmission lines are available and that the frequency
dependence is known. Large-signal equivalent circuits for the terminations
are assumed to be given. Experimental and computer-simulated results are
compared for the lossless dispersionless case, and the effects of losses and
dispersion are predicted.

I. INTRODUCTION

N TODAY’S MANY applications of integrated circuits
and printed circuit boards, transmission lines and inter-

connections play an instrumental role at virtually every.

level of integration. With the design of fast devices having
switching times in the picosecond range, transmitting data
at high megabaud rates has become very commonplace in
modern digital computers and switching networks used for
telecommunication. Signal delays and rise times are more
and more limited by interconnection lengths rather than
by device speed and represent a potential obstacle to the
ultimate scaling on VLSI technology. In recent years,
modeling interconnections has become a major focus of
interest in the implementation of digital and microwave
circuits. Shorter rise and fall times as well as higher
frequency signals have compelled most transmission lines
to operate within ranges where dispersion is no longer
negligible. Skin effect and losses contribute to signal cor-
ruption leading to waveform attenuation as well as pulse
rise and fall time degradations. In wafer-scale integration,
these losses can become very significant and may lead to
an RC type behavior of the lines. Finally, in the case of
multiconductor lines, cross-coupling between neighboring
lines may increase the level of distortion in excited lines
which can initiate false signals in nonexcited lines.

The implementation of a high-density-compatible pack-
aging scheme is essential for the design of high-speed
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digital systems such as gallium arsenide integrated circuits.
For microwave or digital applications, printed circuit
boards, chip carriers, and mod:ling of these networks
represent the first step toward implementing reliable de-
sign guidelines. A complete CAD tool for studying these
effects would require a frequency-domain characterization
of the transmission line with higher-order modes included
to account for dispersion. Numerous authors have investi-
gated the properties of microstrip lines at high frequencies
and derived expressions relating the propagation character-
istics to frequency [1]-[10]. Full-wave and simplified mod-
els have been proposed to describe these effects and to
derive the frequency dependence of the characteristic im-
pedance and the propagation constant. Other geometries,
such as stripline, buried microstrip, and coplanar, have
thus far received less attention but obey the same restric-
tions imposed on the electrical performance of microstrip
at microwave frequencies.

Of equal importance is the analysis of a high-speed or
high-frequency signal propagating on a dispersive and
lossy transmission line. Such an analysis requires a com-
plete and accurate frequency characterization of the struc-
ture of interest and, for practicality, must implement the
nonlinear and time-changing behaviors of the termina-
tions, which are transistors, logic gates, or other types of
active devices. Several investigators have attempted to set
up analytical models describing wave propagation in such
systems. Solutions for lossless lines with arbitrary termina-
tions were obtained by Mohammadian er a/. [12] using a
forward and backward wave approach. Veghte and Balanis
[13] have analyzed the distortior: of a pulse due to dis-
persion along a microstrip transmission line. Caniggia
[14] combined macromodels for transmission lines and
terminations, and Djordjevic er al. [11] used a Green’s
function approach to simulate the time-domain transient
on a multiconductor array with nonlinear terminations.

In this study, a combined frequency-domain, time-
domain approach is used to formulate the propagation
equations on a dispersive and lossy line with nonlinear be-
havior at the terminations. The novelty of the method
resides in the formulation, which separates the linear ex-
pressions for the transmission line from the nonlinear
expressions for the terminations by means of scattering
parameters and the use of an auxiliary reference imped-
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ance. A time-domain flow-graph representation of the
solution is also derived. In the lossless case, the solution
reduces to very simple expressions which greatly increase
computational efficiency.

II. FORMULATION

Consider an arbitrary transmission line with arbitrary
loads at both ends (see Fig. 1). The differential equations
relating the voltage V' and the current I along the line are
expressed by

av oI

—E;=LOE+ROI (1a)
ol av

- 5; = CO‘E;' + GOV (1b)

where L,, C;, R, and G, are the inductance, capacitance,
resistance, and conductance per unit length, respectively.
The solutions for time-harmonic excitation are usually
written in the frequency domain as (w=2#f is angular
frequency)

V(w,x) = de 7+ Be* "

(2a)
I(w,x)=%[Ae‘”‘—Be”x] (2b)

where

- - Ry+ jwl
y={(Ry+ jowLy)(Gy + juCy)  Zy= Go jaC,
(3)

Here y and Z, are complex, leading to an attenuation of
the signal as it propagates through the medium. If the
terminations are linear and time-invariant (i.e., Z,(¢) and
Z,(t) are constant with time), the coefficients 4 and B
can be determined by matching boundary conditions at
x=0 and x=1/ next, an inverse Fourier transform ap-
proach can be used to solve for the time-domain solution.
On the other hand, if the terminations are nonlinear or
time-changing, then the boundary conditions must be for-
mulated in the time domain as

V(1) =V(1,0)+ Z,(2) I(t,0) 4
Zy(e)I(t, 1) =V(¢,1) (5)

where V,(7) is the source voltage. Z,(¢) and Z,(r) indicate
the time variations of the source and load terminations,
respectively. For any time greater than ¢, Z,(¢) and Z,(¢)
are not known, since they depend on the voltage and
current solutions at time ¢. In fact, the evaluation of Z;(#)
and Z,(r) may involve several iterations that involve solv-
ing the terminal network equations with trial values until
convergence to the true impedance values. Transforming
conditions (4) and (5) into the frequency domain is inap-
propriate, and a time-domain formulation is thus neces-
sary. Likewise, (2) and (3) cannot conveniently be analyti-
cally inverted into the time domain and constrained to
satisfy (4) and (5). This limitation arises not only because
of the dispersive and frequency-dependent characteristics
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Transmission line with nonlinear terminations and source
generator.

Fig. 1.

of the line, but also because the evaluation of the coeffi-
cients 4 and B requires an a priori knowledge of the
time-dependent load functions. A formulation in which the
causality of the boundary conditions is implied thus be-
comes necessary. The use of scattering parameters allows
one to define the properties of the transmission line inde-
pendently from those of the terminations; consequently,
by properly combining load and line relations, a simple
expression for the solutions can be derived.

III. SCATTERING PARAMETER FORMULATION

Any linear two-port network can be described as a set of
scattering parameters (S parameters) which relate incident
and reflected voltage waves. These waves are variables
which depend on the total voltages and currents at
the two-port. If ideal (lossless and dispersionless) transmis-
sion lines of known characteristic (reference) impedance
Z..¢ are connected to both ports of a linear network, then
the voltage waves on the reference lines (see Fig. 2)
a,, b, a, b, are defined as the incident and reflected
waves from port 1 and port 2, respectively. The scattering
parameters are then known to satisfy the frequency-domain
relation

b1=§11a1+ 5712‘12 (6)
b2=.§21a1+§22a2. (7)

S, and S,, are regarded as scattering reflection coeffi-
cients, whereas S}, and S, are the scattering transmission
coefficients of the network. The total voltages in ports 1
and 2 are, respectively, given by

Vi=a +b (8)
Vy=a,+b, (9)
and the expressions for the currents are
a4 b,
I =—— 10
' Zref Zref ( )
a, b,
L=——-—. 11
R (1)

A relation between the propagation characteristics of a
transmission line and the associated scattering parameters
can then be easily derived. For a single mode of propa-
gation, it can be shown that for a given transmission line

- - (1-a?)p . . (1—p2)a

11- 92~ 1- o’ 12252121__p2ag (12)
Z(w)— 2

a=e_yl . O( ) ref (13)

p=—-
ZO(w)+ Zref
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Fig. 2. Transmission line and frequency-domain flow-graph representa-
tion using scattering parameters.
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Fig. 3. Time-domain circuit and flow-graph representation of arbitrary
transmission line (TL) with nonlinear terminations at time z. The sign *
indicates a convolution between time-domain scattering parameters
and the independent voltage waves a; and a, as per (14) and (15).

where a(w) and Z,(w) account for the dispersive and
lossy behaviors of the line. Z (w) is the characteristic
impedance of the line to be analyzed and must be dis-
tinguished from Z , the characteristic impedance of the
reference lines which support the voltage waves associated
with the S parameters. The scattering parameters of a
transmission line depend only on its electrical characteris-
tics and are not influenced by the source and load voltages
at the terminations; however, the overall response of the
system is a combination of line and termination responses
and can be obtained by cascading the various sections of
the network. We can then write the time-domain equations
relating the voltage waves of an arbitrary line terminated
with nonlinear loads (Fig. 3). We get (subscripts 1 and 2
refer to near end and far end, respectively)

by(t) =Sy (1)*a (1) + S, (¢)*ay(1) (14)

by(2) = Syu(t)*a; () + Sy(1)*ay(2) (15)
where * indicates a convolution in the time domain. The
scattering parameters Sy;(¢), S15(2), $5,(¢), S5, (¢) are the
inverse transforms of the frequency-domain S parameters
and can be viewed as Green’s functions associated with the
time-domain response of the transmission line, due to a
single frequency source at the terminations. The load
conditions at the near and far ends are now directly

expressed in the time domain by looking at the flow-graph
representation of the system (see Fig. 3)

ay(t) =Ty()by(1) + T (2)g:(¢) (16)
a, (1) =Ty ()b, () + T, (1) g,(1) (17)

in which I')(?), I,(¢), T;(¢), T,(¢) are the reflection and
transmussion coefficients associated with near and far ends,
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respectively:

T(l)_ Zref F(f)= Zz(t)_Zfef (18)
' Zz(t)+Zref ' Zt(t)+Zref
In (14) and (15), each of the convolution terms can be

expressed as
(19)

Since the algorithm to be derived must be amenable to
computer usage, it is desirable to discretize (19) and isolate
a;(¢) in a manner analogous to [11, egs. (12) and (13)]:

5,1, = 8,

L)

S*q —ftSU(t—'r)aj('r)dT.

—r)a,(r)Ar

-1

S, (t)*a,(1)=S5,,(0)a,(1)Ar+ E‘,lsu(t ~71)a,(r)Ar

(20)
S, (t)*a,(t)=S/(0)a, (1) + H, (1) (21)

where At is the time step and S/ (0) = S;;(0)Ar. H, (¢) =
Xi2LS,, (1= 7)a,(t)Ar represents the history of the line
and depends on information up to time ¢ —1. Causality
insures that the a;’s are known for 7 <#, which allows the
use of this information for the determination of the a;’s at
7 = t. We first substitute (21) into (14) and (15) and obtain
bl(t) = 811(0)ay () + S7,(0) a, (1) + Hyy (1) + Hyy (1)
(22)
S51(0)ay(2) + 83,(0) a,(#) + Hy(2) + Hy(2).
(23)
Combining the above equations with those for the forward
waves (16) and (17), one gets

_ [1-1,(1)S5,(0)] [Ty(#) £:(¢) + Tu (1) My (1)]
al(t) - A(t)
F {(0)SH(0)[To(1) g, (2) + T, (2) My (1)]
A(2)
[1-1,(0)SH(0)][T5(1) g2 (1) + T (£) M, (1)]
A(r)
FZ(I)Sil(O)[Tl([)gl(I)_‘_Fl(t)Ml(t)]

by(2) =

(24)

a,(t) =

0 (25)
A(r) = [1-T,(2)8$(0)] [1- [,84,(0)]

—T1(2) $1,(0) () 55,(0) (26)

where M, (¢) = H;;(1)+ Hp,(1), and M,(1) = Hy(¢)+

H,,(r). The variables b,(¢) and b.(¢) are recovered using
(22) and (23), and the total voltages at ports 1 and 2, by
using (8) and (9). Fig. 4 shows the flow-graph representa-
tion for the transmission line ai time ¢ in which the
memory of the complete network has been included in the
terms M,(¢) and M,(¢). The independent terms are g;(?)
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Fig. 4. Equivalent flow-graph representation of arbitrary transmission
line with nonlinear time-varying terminations at time ¢. The history of
the network is included via the memory variables M, (¢) and M, ().
Note that this representation involves only multiplications in the time
domain.

and g,(¢). M(t) and M,(t) are also independent and
contain the information pertinent to the history of the line.
Numerical efficiency is of practical importance for the
simulation since it determines the speed of the computa-
tions involved. Expressions (24)-(26) can be further re-
duced by observing that for transmission lines with non-
zero length, S/,(0) and S7;(0) must vanish, since a finite
duration is required for an arbitrary signal to propagate
through the line. The above relations then become

_ [1-T(6)S5(0)] [T1(2) g1(2) + Ty (1) My ()]
al(t)_~ A(t)

(27a)
[1-Ty(1)S7,(0)] [T, () g, (1) + T (1) My(2)]
A(t)

a,(t) =

(27b)

bl(t) :Sl’l(o)al(t)+M1(t) (27‘3)

by(t) = S$3,(0)a,(2)+ M,(t) (274)
with

A(r) = [1_r1(t)Sf1(0)][1_r2(t)52/2(0)]- (28)

Computational limitations in these expressions are es-
sentially determined by M,(¢) and M,(¢), which con-
tain the history of the network and involve the voltage
wave solutions from previous time steps. In the case where
losses and dispersion are neglected, the frequency-domain
scattering parameters associated with the transmission line
become

(1= e201/)

Sll(“") = Szz(‘*’) = 1— pze_zf“”/” (29)
. . (1 - p2)84/w//v
Spp(w) = 8y(w) = FEpeTy (30)
where
ZO - Zref
=— 31
g Z'O+ Zref ( )

Since Z,. the characteristic impedance of the line, is con-
stant with time, and since Z ;. the reference impedance, is
arbitrary, one can choose Z, = Z;, which leads to p=0
and

S~11(w) = 5722(‘*’) =0
5712(“’) = 521("9) =g /el

(32)
(33)

Therefore, the time-domain Green’s functions associated
with the scattering parameters are

Sn(2) =8,(1) =0
S1p(2) =8y (1) =3(t‘ %)

M (t) =a,(t—1/v)
M,(t) =a,(t—1/v) (37)
A(r) =1. (38)

We then obtain simple expressions for the forward and
backward waves:

al(t) = Tl(t)gl(t)+ Fl(t)az(t -1/v)

(34)
(35)
(36)

(39)

a,(1) =T,(1) g, (1) + T, (1) a (1~ 1/v) (40)
by(t)=a,(t1—1/v) (41)
b,(t) =a,(t—1/v). (42)

The advantage of the above expressions lies in their
computational efficiency, since only a search is involved in
the evaluation of the history of the network, and no
summations of previously calculated terms are needed.

IV. MODELS FOR TERMINATIONS AND DEVICES

Thus far, this study concentrated on simulating the
time-domain transient response for arbitrary transmission
lines terminated with nonlinear devices. In this section, we
examine the nature of the terminations and the manner in
which they are to be represented in a form consistent with
the relations derived. Several techniques are available that
convert reactive elements and nonlinear devices to time-
varying causal resistances as well as voltage or current
sources. We briefly overview two of these techniques,
namely, the trapezoidal algorithm and the Newton-
Raphson (NR) algorithm. A more detailed development
can be found in [15]. Since formulation and solution are in
the time domain, every element must have an equivalent
network in the time domain. The trapezoidal algorithm is a
numerical integration algorithm, and its use in repre-
senting reactive elements in the time domain is illustrated
below. Consider a capacitor C, with a current-voltage
relation given by

av

I=C—. 43
o (43)

If we discretize the time variable by choosing a time step
h, then the voltage V,, , at time ¢,,,;=(n+1)h can be
approximated in terms of variables at ¢ = nh as

h h
V;,+1=I/,,+EI/;,’+1+EV,1’

where the superscript ’ indicates a derivative with respect
to time. Making use of (43), we get

2¢C C
Vn+1—_(_I/n+in)'

(44)

I, =— 45
n+1 ]’l h ( )

Equation (45) can then be represented by the equivalent
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Fig. 5. Linear capacitor and equvalent time-domain trapezoidal al-
gorithm representation.
1
I
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Fig. 6. Geometrical and circuit interpretation of the Newton—Raphson
algorithm at the kth iteration.

linear one-port model a2t time ¢, = (n+1)h (see leg,c 5)
C
with conductance G =— and current source J, = —V,

+ i,. An analogous derivation can be performed for induc-
tances as well. The efficiency of the method depends on a
proper choice of the time step which determines the stabil-
ity of the numerical solution. Several other techniques of
numerical integration are also available which offer greater
stability at the price of numerical complexity [15].

Nonlinear elements such as diodes and transistors must
be reduced to equivalent networks with linear elements at
time ¢. If the nonlinear current voltage relation for these
elements is known, then an iterative scheme such as the
Newton-Raphson algorithm can be used to seek a solu-
tion. The circuit representation of the Newton-Raphson
technique is illustrated in Fig. 6. At a particular time, a
guess value for the voltage is chosen to which a current is
associated via the -V relations that determine the operat-
ing point Q. The next guess is then related to the previous
one by

L. (46)

Vi =V - [W

At each iteration step, the resulting equivalent circuit
is composed of a linear conductance of value G, =dI/dV
at ¥, and a current source with value given by J, =
I(V,)—G.V,. Solving the combined transmission line
Newton-Raphson equivalent circuit problem at each itera-
tion step will lead to the actual representation of the
termination at time ¢.

Once linearization and discretization are performed,
time-domain values are available for the equivalent resis-
tances or generators. These expressions are causal, since
their values at any time ¢ depend on the history of the
network which renders impossible an a priori knowledge
of the time variations of the termination impedance. Non-
linear complex elements can be handled by first using the
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NR scheme for linearization at a given time, then stepping
in the time domain while replacing linear complex ele-
ments by time-varying resistances and generators.

V. APPLICATIONS AND PRACTICAL CONSIDERATIONS

Many applications in microwave and digital communi-
cations require the use of transmission lines terminated
with nonlinear devices. Distortion and noise arise when the
terminations are not matched to the line impedance. More-
over, if losses and dispersion are present in the line,
attenuation and time delay come into account. The combi-
nation of these effects needs to be modeled and simulated
on a reliable computer-aided design (CAD) tool. Simula-
tions of pulse propagation through lossy transmission lines
terminated with active devices can be very useful in pre-
dicting signal distortion, attenuation, rise and fall time
degradation which occur along the transmission path. The
necessary information for such a 100l are the line parame-
ters over a wide frequency range and complete device
characteristics. The line parameters can be found from a
frequency-domain full-wave dispersion analysis which in-
cludes the effects of losses. Device data are usually ob-
tained from the current—voltage characteristics provided
by the manufacturers.

Several computer simulation programs were developed
to simulate waveform distortion on various combinations
of transmission lines and terminations. First, a lossless
stripline structure terminated with advanced Schottky (AS)
TTL inverters was studied (see Fig. 7). The length of the
line was 50 in (1.27 m) with Z,=73 Q, v =0.142 m/ns.
The line was excited by the output of an AS04 inverter
(driver). The receiving end of the line was connected to the
inputs of eight AS240 inverters. For computational ef-
ficiency, a simple dynamic nonlinear equivalent circuit was
used to model the output of the driver. The network
consisted of a voltage generator in series with a voltage-
dependent resistor. An 8 pF capacitor was placed in paral-
lel with the combination to model rise and fall time
degradation and RC time delays (see Fig. 7(b)). The gener-
ator provided a pulse with a magnitude of 4.2 V. The
voltage dependence of the resistance is shown in Fig. 7(b).
The quick jump in resistance is used to model the cutoff
point of one output transistor of the TTL inverter. The
input of each AS240 inverter was modeled as a reverse-bi-
ased Schottky diode in parallel with an 8 pF capacitor (see
Fig. 7(c)). The simulation process involved first choosing a
time interval and then stepping in time and determining
the voltage variables as per (39)-(42). The trapezoidal
scheme was used to convert capacitors to linear sources
and resistances. Likewise, the Newton—Raphson algorithm
made it possible to convert the Schottky diodes into a
linearized equivalent circuit. The time steps were found to
have no significant effects on the accuracy of the solutions
due to the good stability properties of the trapezoidal
algorithm. Experimental results are compared with the
simulations in Fig. 8(a) and (b). Minor discrepancies were
attributed to pin and socket inductances, which were not
accounted for in the model. Likewise, charge control ef-
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Fig. 7. (a) Configuration used for simulation of transients on a stripline
structure with nonlinear loads. (b) Model used for AS04 driver with
voltage dependence of impedance, C, =8 pF. V(t) has the following
characteristics: width =108 ns, rise time =5 ns, fall time =4 ns.
(¢) Model used for the mput of each AS240 receiver. The diode has a
saturation current I —10*

fects, which determine rise and fall time degradation as
well as time delay through the inverters, were not modeled.
The otherwise overall good agreement indicated the valid-
ity of the simplified device models. ' o

Losses were “also analyzed using (27) Fxrst the
frequency-domain scattering parameters were calculated
for the transmission line shown in Fig. 9. Skin effect in the
conductor was accounted by a \/— behavior of the resis-
tance per unit length. Once the frequency dependence of
the scattering parameter was determlned a fast Fourier
transform (FFT) algorithm was used to solve for the
time-domain Green’s functions associated with the S
parameters. Then (20)-(28) were used to calculate the
voltage waves. Fig. 9 shows the configuration used to
predict and compare waveforms on lossless and lossy
microstrip lines. The low-frequency characteristics of the
line were: Ly= 539 nH/m and C,=39 pF/m The resis-
tance per unit length for the lossy case was R,
=/f (in GHz) 1 kQ/m. Dielectric losses were neglected

Near End
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% #
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H %
S
1
@ -
1 ey 1
I : CotnE B
© Timeing
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]
e
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& 1
& TR e
Thews ins)
(b)
Fig. 8. Comparison of theoretical (plots) and experimental (photo-

graphs) simulations for the stripline structure terminated with AS
inverters of Fig. 7 at (a) the near end and (b) the far end. Vertical
scales in experimental simulations have a probe attenuation factor of
10.
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Microstrip

Length= 25 inches

Generator Zo (low frequency) = 150 Q

Propagation velocity = 0.217 meters/nS

Fig. 9. Microstrip configuration used to simulate the effects of losses.
Line length = 25 inches (0.635 meters). Low-frequency electrical char-
acteristics: Ly =539 nH/m, C; = 39 pF/m. Loss characteristics: R, =
yfinGHz 1 kQ/m and G, =0 mhos/meter. Pulse characteristics:
magnitude = 4 V, width = 20 ns, rise and fall times =1 ns.
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Fig. 10. Comparisons between responses for lossless and lossy cases for
the microstrip structure of Fig. 9 at (a) the near end and (b) the far end.

(G, = 0), which is a good representation of many intercon-
nections in integrated circuit design. The above configura-
tion was excited by a 4 V pulse generator with an internal
impedance of 50 €, and a termination impedance of 1 k{2.
A comparison between lossy and lossless cases is shown in
Fig. 10. As anticipated, the introduction of losses led to
rise and fall time degradation and waveform attenuation.
Experimental simulations were not available due to the
lack of reliable measurement techniques for accurately
determining the frequency dependence of microstrip loss
parameters. Such information is essential in developing
models to be used in conjunction with the simulations.
Other alternatives would include providing a set of mea-
sured scattering parameters for an arbitrary (lossy and
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dispersive) transmission line over a wide frequency range
(up to 18 GHz). Time-domain Green’s functions can then
be numerically computed and used to calculate the associ-
ated response.

VI. CONCLUSIONS

This study explored some important aspects of intercon-
nections for digital and microwave applications. The prob-
lems of losses, dispersion, and load nonlinearities were
analyzed. A simple algorithm was derived for the simula-
tion of an arbitrary time-domain signal on a structure
having all the above properties. The algorithm assumed
that the frequency-dependent characteristics of the line
were available as well as large-signal models for the
terminations. Future work includes the derivation of a
suitable loss and dispersion model and the extension of the
algorithm for modeling n-line multiconductor systems.
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